Modelling climate change-driven treeline shifts
نویسندگان
چکیده
1 Global warming will probably shift treelines upslope in alpine areas and towards the pole in arctic environments. However, responses of regional treelines to climatic trends over the last century do not show any clear trends. We hypothesize that these equivocal responses may partly be caused by limitation of dispersal and/or recruitment that is species-specific to particular trees with potentially expanding ranges. 2 To test this hypothesis, we established and parameterized a temporally and spatially explicit model of plant spread and analysed its sensitivity to: (a) variation in predicted climatic trends; (b) the spatial distribution of recruits around a seed source; and (c) variation in the resistance of resident non-woody vegetation to invasion. We used data from a high mountain landscape of the Northern Calcareous Alps in Austria where the treeline is dominated by Pinus mugo Turra, a shrubby pine. 3 Low growth rates and long generation times, together with considerable dispersal and recruitment limitation, resulted in an overall slow range expansion under various climatewarming scenarios. 4 Running the model for 1000 years predicted that the area covered by pines will increase from 10% to between 24% and 59% of the study landscape. 5 The shape of the dispersal curve and spatial patterns of competitively controlled recruitment suppression affect range size dynamics at least as severely as does variation in assumed future mean annual temperature (between 0 ° C and 2 ° C above the current mean). Moreover, invasibility and shape of the dispersal curve interact with each other due to the spatial patterns of vegetation cover in the region. 6 Ambiguous transient responses of individual treeline systems may thus originate not only from variation in regional climatic trends but also from differences in species’ dispersal and recruitment behaviour and in the intensity and pattern of resistance of resident alpine vegetation to invasion.
منابع مشابه
Consequences of treeline shifts for the diversity and function of high altitude ecosystems
Recent and historical changes in species distributions in response to environmental change are well documented in the scientific literature. In recent decades, investigation of the impact of current changes in climate has been a major focus in biogeographical studies (Parmesan, 2006; Parmesan and Yohe, 2003; Walther, 2003). Climate conditions play an important role in determining the limits to ...
متن کاملClimate‐related changes of soil characteristics affect bacterial community composition and function of high altitude and latitude lakes
Lakes at high altitude and latitude are typically unproductive ecosystems where external factors outweigh the relative importance of in-lake processes, making them ideal sentinels of climate change. Climate change is inducing upward vegetation shifts at high altitude and latitude regions that translate into changes in the pools of soil organic matter. Upon mobilization, this allochthonous organ...
متن کاملDominant factors controlling glacial and interglacial variations in the treeline elevation in tropical Africa.
The knowledge of tropical palaeoclimates is crucial for understanding global climate change, because it is a test bench for general circulation models that are ultimately used to predict future global warming. A longstanding issue concerning the last glacial maximum in the tropics is the discrepancy between the decrease in sea-surface temperatures reconstructed from marine proxies and the high-...
متن کاملWarming and neighbor removal affect white spruce seedling growth differently above and below treeline
Climate change is expected to be pronounced towards higher latitudes and altitudes. Warming triggers treeline and vegetation shifts, which may aggravate interspecific competition and affect biodiversity. This research tested the effects of a warming climate, habitat type, and neighboring plant competition on the establishment and growth of white spruce (Picea glauca (Moench) Voss) seedlings in ...
متن کاملIntegrating remote sensing and demography for more efficient and effective assessment of changing mountain forest distribution
Species range shifts have been well studied in light of rising global temperatures and the role climate plays in restricting species distribution. In mountain regions, global trends show upward elevational shifts of altitudinal treelines. However, there is significant variation in response between geographic locations driven by climatic and habitat heterogeneity and biotic interactions. Accurat...
متن کامل